Design and cloning gRNA oligo's into Cas9 vectors from F. Zhang Lab

S. Rao & M. Zogg 05/23/2017

Reagents:

Plasmids: pX459, etc.

Guide RNA oligos, designed with Bbs I overhangs, from Feng Zhang http://tools.genome-

engineering.org and Shirely Liu's lab (http://crispr.dfci.harvard.edu/SSC/)

Bbs I (NEB R0539S)

Low melt agarose T4 PNK (NEB M0201S)

High Conc T4 DNA ligase (NEB0202T)

rSAP (NEB M0371S)

T4 DNA Ligase Reaction Buffer (NEB B0202S)

One Shot Stbl3 competent *E.Coli* (Life Tech C7373-03). These are the safe choice, but regular competent bacteria seem to work as well.

Ampicillin, LB, LB-Agar Plates containing 100µg/mL Amp

Sequencing Primer (U6 derived, #1393, GAGGGCCTATTTCCCATGATTCC)

Prior to Starting

- 1) This protocol is derived from **Ran FA** *et al*, **Nature Protocols**, **2013**. While not identical, it follows it closely. Read that paper for details, as well as check out the genome-engineering.org website. Addgene (addgene.org), where many genomic editing plasmids are deposited, has a number of useful tools, guides, and protocols as well.
- 2) Design sgRNA oligos (fwd and rev) and order along with U6 fwd primer (standard desalted value oligos at 50N scale of synthesis work fine).
- 3) Once arrived, dilute oligos to 100 μM in water; store at -20 °C.

gRNA Design

- 1) Identify the genomic region you want to target. Get the DNA sequence of the region you wanted targeted. For simply knocking out a gene, I usually identify the second or third coding exon. Targeting the first coding exon can be problematic, since you will make an indel near the initiator ATG- then you can often times get initiation at an internal ATG which will prevent you from making a frame-shift. This can be easily done using the UCSC genome browser (genome.ucsc.edu) if it is a common genome.
- 2) Use the CRISPR design tool from Shirley Liu's lab. (http://crispr.dfci.harvard.edu/SSC/). It tries to identify gRNAs with the optimal sequence to maximize double stranded breaks (DSBs) while minimizing the off-target effect.
- 3) Remember to add in the appropriate sequences for cloning into vectors (See Figure 1).
- 4) Refer to Ran et al, Nature Protocols, 2013 for details

Screening for editing

- 1) It is very hard to discuss ALL the possible screening strategies. The T7 assay can be used, which measures non-specific indel formation using a PCT based approach. To design primers for this, I find the genomic region targeted by my gRNA9(s)- typically 50-100bp. I then add on 400-500bp on either side of genomic sequence (from UCSC genome browser) and use the NCBI Primer design tool (www.ncbi.nlm.nih.gov/tools/primer-blast/; 60 °C melting temp, oligo size 18-25 bp) to find the best possible oligo that will contain the indel region AND PCR up a 500-800bp band for agarose gel visualization.
- 2) Refer to Ran et al, Nature Protocols, 2013 for details

- 3) An alternative is to use PAGE electrophoresis on small PCR products (100bp) to detect small changes in size.
- 4) A final screen is to perform PCR and then sequence the PCR product and simply look for what % have indels. This can be done with TIDE (http://tide.nki.nl), but naturally does not run at the BRI as far as I can tell.

gRNA cloning

•Assumes you are cloning into a px Vector from Feng Zhang or LentiCrispr_v2. Otherwise, will need to check yourself.

Day 1:

1) Digest 3-5µg of the appropriate vector (px459 as an example) in 50µL reactions in 0.2 mL PCR tubes:

X μL vector 5 μL 10x NEB Cut Smart Buffer 2-3 μL 5000U/mL Bbsl Water to 50 μL

- 2) 37 °C for ~3 hours; heat inactivate at 65 °C for 20 min
- 3) Dephosphorylate cut vector:

50 μL Bbsl digested vector

1-2 µL rSAP (any SAP works)

- -incubate in thermocycler at 37 °C for 30-60 min
- -heat inactivate in cycler at 65 °C for 5 min if stopping, otherwise load on gel
- 4) Pour as small and thin a gel as possible for purifying vector (0.7% agarose with TAE)
- 5) Make sure 6x loading buffer is pH >6.0-8.0; add loading buffer to vector to 10% of volume of sample (ex.: 3 μ L buffer to 30 μ L sample)
- 6) Load on gel filling well(s) with as much vector as possible; you should see only one clean band let it run 1/3 to halfway down the gel. **While gel is running, anneal oligos (step 11).**
- 7) Carefully, cleanly, and quickly excise band with as little excess agarose as possible in less than 45 seconds.
- 8) Gel purify the linearized vector using standard IBI kit
- 9) Quantify gel purified DNA with Qubit Broad Range.
- 10) Anneal sgRNA oligos:
 - a. Mix the following reaction:

sgRNA fwd (100 μM)	1 µL
sgRNA rev (100 µM)	1 µL
10x T4 DNA ligation buffer	1 µL
T4 PNK	1 µL
ddH ₂ 0	6 μL
	10 µl

b. Phosphorylate and anneal oligos in a thermocycler using the following program:

37 °C for 30 min 95 °C for 5 min Ramp down to 25 °C slowly (0.1 °C/sec) 25 °C for 5 min

- c. Dilute phosphorylated and annealed oligos 1:200 (ex.: 1 μ L annealed oligos to 199 μ L water). Save on ice.
- 11) Ligate BbsI cut, gel purified, dephosphorylated vector and phosphorylated, annealed oligos using Quick T4 DNA ligase; also, do a vector only (<u>NO</u> oligo) ligation control to ensure the vector was adequately digested and dephosphorylated:

25-50 ng of Bbsl cut, gel purified, dephosphorylated vector

2 μL of annealed Oligo's

1 μL of 10x DNA ligase Buffer

1 µL of High Conc T4 DNA Ligase

Water to 10 µL

16 °C overnight

- 12) Transform into Stbl3 bugs as that protocol indicates. Briefly:
 - a. Add 3 μ L of each ligation (step 12) to a tube of bacteria. Mix gently; DO NOT pipet up and down.
 - b. Incubate on ice for 30 min
 - c. Heat shock at 42 °C for 45 sec
 - d. Incubate on ice for 2 mins
 - e. Add 250 µL of prewarmed SOC media
 - f. Shake at 37 °C for 1 hr while shaking at 225 rpm. Prewarm the plates at 37 °C.
 - g. Plate on LB/100μg/mL Amp plates at 200 μL and 50 μL; plate vector only control at 200 μL and pUC19 transformation control(if done) per protocol
 - h. Grow overnight at 37 °C.
 - i. COMMENT: We have used non Stbl3's with good results- but I would be careful to check and make sure your plasmid did not go through some type of recombination.

Day 2:

- 13)Compare # of colonies between the vector control(no insert) and ligation plates. Should see a LOT more colonies on the vector+insert plate than on vector alone.
- 14) Pick a reasonable # of colonies per construct. I like to pick so the final number is a multiple of 6 (6, 12, 18, 24, etc.); makes it easier to process.
- 15) Grow colonies in LB/100µg/mL Amp
- 16) Shake overnight 37 °C.

Day 3:

- 17) Miniprep each culture
- 18) Screen by PCR using U6 fwd + sgRNA rev primers; you should see a strong 273bp band for a positive
- 19) Sequence clones using U6 fwd primer
- 20) COMMENT: Because the cloning rate is so ridiculously high, I don't check for an insert. I miniprep and send for sequencing, 1-2 minipreps per insert.

Day 4:

21) Maxiprep positives and screen with PCR as above.

Figure 1 PAM- typically NGG, encoded in genome, not gRNA

N and M are complementary bases.N's are the "output" of CRISPR Design Tool

Top Oligo 5'-CACCGNNNNNNNNNNNNNNNNNNNNNN-3'