Location out of bounds
Radial
Radial

Newsroom

Resources for journalists

All Publications
John Pulikkan, PhD

What's in a gene?

Milwaukee – March 19, 2019

Associate Investigator John Pulikkan, PhD, hopes to develop targeted therapies to treat acute myeloid leukemia.


Typically, cancer patients—whether they have lung cancer or leukemia—are treated with chemotherapy. Chemo’s aim is to attack harmful cancer cells; however, it also kills normal, healthy cells, leaving patients susceptible to infection and other harmful side effects. What if there were a way to specifically target cancer cells, without putting healthy cells at risk?

Finding a new way to treat diseases like cancer is not a simple process. First, investigators must identify which genes in the human body are mutating and causing the disease. Second, they must discover an inhibitor (in most cases, a drug) that will prevent or cure the disease. Finally, they must ensure this inhibitor has no toxic side effects and that it is safe for patients to use.

Associate Investigator John Pulikkan, PhD, may be new to the Blood Research Institute (BRI), but his expertise in identifying inhibitors precedes him. During his postdoctoral work at the University of Massachusetts Medical School, Dr. Pulikkan studied how mutations in the DNA of blood cells direct leukemia formation. In collaboration with researchers at the University of Virginia. Dr. Pulikkan co-discovered AI-10-49, a small molecule inhibitor of the aberrant gene CBFβ-SMMHC, which causes acute myeloid leukemia (AML). He tested this inhibitor against leukemic samples to show that the inhibitor could be a potential treatment option for patients with leukemia.

Now, Dr. Pulikkan brings that expertise to the Versiti Blood Research Institute, where he will study CEBPA, a gene in the human body that is mutated in acute myeloid leukemia. Little is known about CEBPA mutations in leukemia, and very few labs are working on it. Dr. Pulikkan is working hard to understand how it mutates and causes leukemia.

For investigators, identifying the genes that mutate and cause cancer is relatively easy. But in order to develop new treatment methods for patients, investigators need to better understand what causes them to mutate in the first place, which is more challenging. Without knowing how and why these mutations cause leukemia, it’s difficult to develop a treatment that will solely attack leukemia cells, leaving healthy cells be. “If we know this, it will help us design drugs that will fix the problem,” Dr. Pulikkan says. Once investigators have identified how the “problem” genes cause AML, they can begin work on targeted therapies that would eventually be taken into clinical trials.

Eventually, Dr. Pulikkan would like to develop drugs that are specially targeted to the mutated leukemia cells, so that the drugs would have no side effects—sparing patients the potentially harmful side effects of chemotherapy. This innovative research will hopefully help other investigators develop ways to treat other forms of cancer, and not just blood cancers like acute myeloid leukemia.

Other Publications

Blood samples in tubes.

How Versiti researchers are helping patients with atherosclerosis

November 7, 2019

Postdoctoral fellow Bandana Singh, PhD, believes Versiti Blood Research Institute is poised to make a big impact in the field of vascular biology.

Read More
Weiguo Cui, MD, PhD performing laboratory research

Versiti leads the way in novel, cellular-based immunotherapies

October 23, 2019

Investigator Weiguo Cui, MD, PhD, believes T cells are the key to fighting solid tumors in cancer patients.

Read More
Laboratory tests with blood samples.

Understanding the immune system's ability to eliminate cancer cells

October 22, 2019

Associate Investigator Matthew Riese, MD, PhD, hopes to use a patient’s own immune system to fight cancer.

Read More
ic-arrow-right
x

This website uses cookies to ensure you get the best experience on our website. Learn more